Incorporating Knowledge into Structural Equation Models Using Auxiliary Variables
نویسندگان
چکیده
In this paper, we extend graph-based identification methods by allowing background knowledge in the form of non-zero parameter values. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantive understanding of the domain, or even an identification technique. To incorporate such information systematically, we propose the addition of auxiliary variables to the model, which are constructed so that certain paths will be conveniently cancelled. This cancellation allows the auxiliary variables to help conventional methods of identification (e.g., single-door criterion, instrumental variables, half-trek criterion), as well as model testing (e.g., d-separation, over-identification). Moreover, by iteratively alternating steps of identification and adding auxiliary variables, we can improve the power of existing identification methods via a bootstrapping approach that does not require external knowledge. We operationalize this method for simple instrumental sets (a generalization of instrumental variables) and show that the resulting method is able to identify at least as many models as the most general identification method for linear systems known to date. We further discuss the application of auxiliary variables to the tasks of model testing and z-identification.
منابع مشابه
Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables
We developed a novel approach to identification and model testing in linear structural equation models (SEMs) based on auxiliary variables (AVs), which generalizes a widely-used family of methods known as instrumental variables. The identification problem is concerned with the conditions under which causal parameters can be uniquely estimated from an observational, non-causal covariance matrix....
متن کاملIdentification by Auxiliary Instrumental Sets in Linear Structural Equation Models
We extend graph-based identification methods for linear models by allowing background knowledge in the form of externally evaluated parameters. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantive understanding of the domain, or even from another identification technique. To incorporate such information systematically, we propose t...
متن کاملThe impact of different leadership styles in successful implementation of knowledge management in organizations by structural equation modeling
In an era that in which the economy is in the core of knowledge aspect, knowledge is considered as a vital factor in maintaining the sustained competitive advantage of organizations. Today, the art and skill of management in organizations is moving towards changing into the art of "knowledge management"; and, leadership means providing suitable conditions and grounds in producing valuable know...
متن کاملAccounting for the “Known Unknowns”: Incorporating Uncertainty in Second-Stage Estimation
Recent political science research has seen a surge in interest in estimating latent variables (including ideal points of legislators and judges, political sophistication, and democratization) using item-response theory modeling and other factor-analytic techniques. These models offer several advantages over summated scales and other techniques, but one of these advantages—having an estimate of ...
متن کاملUsing ASGSCA
The ASGSCA (Association Study using GSCA) package provides tools to model and test the associations between multiple genotypes and multiple traits, taking into account prior biological knowledge. Functional genomic regions, e.g., genes and clinical pathways, are incorporated in the model as latent variables that are not directly observed. See Romdhani et al. (2014) for details. The method is ba...
متن کامل